Superconformal Flavor Simplified

David Poland (Harvard University)

arXiv: 0910.4585 [hep-ph] (w/ David Simmons-Duffin)

Santa Fe, 7/07/2010

- Typical approach...
 - Hierarchies in superpotential:

$$W = y_u^{ij} Q_i U_j H_u + y_d^{ij} Q_i D_j H_d + y_l^{ij} L_i E_j H_d$$
$$y_a^{11} << y_a^{22} << y_a^{33}$$

- Typical approach...
 - Hierarchies in superpotential:

$$W = y_u^{ij} Q_i U_j H_u + y_d^{ij} Q_i D_j H_d + y_l^{ij} L_i E_j H_d$$
$$y_a^{11} << y_a^{22} << y_a^{33}$$

- Horizontal Symmetries
- Compositeness
- RGE running? What about SUSY nonrenormalization theorems?

Alternatively...

Hierarchies in Kähler potential:

$$\mathcal{L} = \int d^4\theta \sum_i Z_i \Phi_i^{\dagger} \Phi_i \quad y_{phys}^{ij} = \frac{1}{\sqrt{Z_i Z_j}} y^{ij}$$
$$Z_1 \gg Z_2 \gg Z_3$$

Alternatively...

Hierarchies in Kähler potential:

$$\mathcal{L} = \int d^4\theta \sum_i Z_i \Phi_i^{\dagger} \Phi_i \quad y_{phys}^{ij} = \frac{1}{\sqrt{Z_i Z_j}} y^{ij}$$
$$Z_1 \gg Z_2 \gg Z_3$$

- Allows for anarchical superpotential couplings $y^{ij} \sim O(1)$
- Flavor may have a dynamical origin!

• Taking $\epsilon_i \equiv Z_i^{-1/2}$, this structure gives:

$$(m_t, m_c, m_u) \approx \langle H_u \rangle (\epsilon_{Q_3} \epsilon_{U_3} \epsilon_{H_u}, \epsilon_{Q_2} \epsilon_{U_2} \epsilon_{H_u}, \epsilon_{Q_1} \epsilon_{U_1} \epsilon_{H_u})$$
 $(m_b, m_s, m_d) \approx \langle H_d \rangle (\epsilon_{Q_3} \epsilon_{D_3} \epsilon_{H_d}, \epsilon_{Q_2} \epsilon_{D_2} \epsilon_{H_d}, \epsilon_{Q_1} \epsilon_{D_1} \epsilon_{H_d})$
 $(m_\tau, m_\mu, m_e) \approx \langle H_d \rangle (\epsilon_{L_3} \epsilon_{E_3} \epsilon_{H_d}, \epsilon_{L_2} \epsilon_{E_2} \epsilon_{H_d}, \epsilon_{L_1} \epsilon_{E_1} \epsilon_{H_d})$

$$|V_{\rm CKM}| pprox \left(egin{array}{ccc} 1 & \epsilon_{Q_1}/\epsilon_{Q_2} & \epsilon_{Q_1}/\epsilon_{Q_3} \\ \epsilon_{Q_1}/\epsilon_{Q_2} & 1 & \epsilon_{Q_2}/\epsilon_{Q_3} \\ \epsilon_{Q_1}/\epsilon_{Q_3} & \epsilon_{Q_2}/\epsilon_{Q_3} & 1 \end{array}
ight)$$

Works pretty well for mixing angles!

$$|V_{\rm CKM}| pprox \left(egin{array}{ccc} 1 & \epsilon_{Q_1}/\epsilon_{Q_2} & \epsilon_{Q_1}/\epsilon_{Q_3} \\ \epsilon_{Q_1}/\epsilon_{Q_2} & 1 & \epsilon_{Q_2}/\epsilon_{Q_3} \\ \epsilon_{Q_1}/\epsilon_{Q_3} & \epsilon_{Q_2}/\epsilon_{Q_3} & 1 \end{array}
ight)$$

$$|V_{\text{CKM}}|_{expt} \simeq \left(\begin{array}{cccc} 0.97 & 0.23 & 0.004 \\ 0.23 & 0.97 & 0.04 \\ 0.009 & 0.04 & 0.99 \end{array} \right)$$

What if we impose SU(5) GUT relations?

$$\epsilon_{Q_i} = \epsilon_{U_i} = \epsilon_{E_i} \equiv \epsilon_{T_i}$$
 and $\epsilon_{D_i} = \epsilon_{L_i} \equiv \epsilon_{\overline{F}_i}$

What if we impose SU(5) GUT relations?

$$\epsilon_{Q_i} = \epsilon_{U_i} = \epsilon_{E_i} \equiv \epsilon_{T_i}$$
 and $\epsilon_{D_i} = \epsilon_{L_i} \equiv \epsilon_{\overline{F}_i}$

Up-quarks: $\epsilon_{T_i} \sqrt{\epsilon_H} \approx (.001 - .002, .03 - .04, .7 - .9)$

Down-quarks: $\epsilon_{\overline{F}_i} \epsilon_{\overline{H}} \approx \tan \beta \times (.002 - .01, .002 - .01, .008 - .02)$

Leptons: $\epsilon_{\overline{F}_i} \epsilon_{\overline{H}} \approx \tan \beta \times (.001 - .002, .01 - .02, .01 - .03)$

[Extracted from Antusch&Spinrath '08]

- Simplest structure: '10-centered' model
 - Get within a factor of ~3 from:

$$\epsilon_{T_1} \simeq .003$$
 and $\epsilon_{T_2} \simeq .04$

Prefers large tan β

- Simplest structure: '10-centered' model
 - Get within a factor of ~3 from:

$$\epsilon_{T_1} \simeq .003$$
 and $\epsilon_{T_2} \simeq .04$

- Prefers large tan β
- At smaller $\tan \beta$, could also generate suppressions in $\epsilon_{\overline{F}_i}$ or $\epsilon_{\overline{H}}$
- How do we do this with a model?

- SCFT dynamics generates hierarchy!
 - E.g., give $T_{1,2}$ large anomalous dimensions through couplings:

$$W_{int} = T_1 \mathcal{O}_1 + T_2 \mathcal{O}_2 + W_{CFT}$$

- SCFT dynamics generates hierarchy!
 - E.g., give $T_{1,2}$ large anomalous dimensions through couplings:

$$W_{int} = T_1 \mathcal{O}_1 + T_2 \mathcal{O}_2 + W_{CFT}$$

These interactions generate:

$$\epsilon_{T_i}(\mu) = Z_{T_i}^{-1/2}(\mu) = \left(\frac{\mu}{\Lambda}\right)^{\dim(T_i) - 1}$$

- Relevant deformations cause exit from CFT regime
- At what scale Λ_c ?

- Relevant deformations cause exit from CFT regime
- At what scale Λ_c ?
 - Often W_{int} violates Baryon & Lepton #
 - Landau pole for MSSM gauge couplings
 - Suggests $\Lambda_c \sim M_{GUT}$

 Λ Flavor CFT $\Lambda_c \sim M_{GUT}$ MSSM

TeV

(but could be lower in some models)

- In order to evaluate a model, we'd like to calculate the anomalous dimensions
- This is equivalent to finding the 'correct' superconformal $U(1)_R$ symmetry

(since
$$\dim(\mathcal{O}) = (3/2)R_{\mathcal{O}}$$
)

- In order to evaluate a model, we'd like to calculate the anomalous dimensions
- This is equivalent to finding the 'correct' superconformal $U(1)_R$ symmetry

(since
$$\dim(\mathcal{O}) = (3/2)R_{\mathcal{O}}$$
)

- In 2000, this could only be uniquely determined if there were a sufficient number of interactions...
- Original models also chiral, so making sure exotic states decouple required even more interactions

	$SU(5)_{ m GUT}$	Sp(12)	${f Z}_2$	dimension
$T_{1,2,3}$	10	1	1	$2, \frac{4}{3}, 1$
$\mid \overline{F}_{1,2,3}, \overline{H} \mid$	$\overline{5}$	1	1	$\frac{5}{3}, 1, 1, 1$
$\mid H \mid$	5	1	1	1
$\mid \overline{T} \mid$	$\overline{10}$	12	1	$\frac{2}{3}$
A	1	65	1	$\frac{2}{3}$
$\mid F \mid$	5	12	1	$\tilde{1}$
Z, U, V	1	12	1, -1, -1	$rac{1}{3},rac{7}{6},rac{7}{6}$

$$W = T_1 \overline{T}Z + T_2 \overline{T}ZA + \overline{F}_1 FZ + \overline{T}^3 F + \overline{T}FFZ + AUV$$
$$+ Z^2 UV + Z^2 U^2 + Z^2 V^2 + W_{exit}$$

	$SU(5)_{ m GUT}$	Sp(8)	Sp(8)'	dimension
$T_{1,2,3}$	10	1	1	?,?,1
$\mid \overline{F}_{1,2,3}, \overline{H}$	$\overline{5}$	1	1	1
	5	1	1	1
Q	$\overline{10}$	8	1	?
$\mid L, M$	1	8	1	?,?
$J_1, J_2, J_3, J_4, J_5, J_6$	1	8	1	$?,?,?,?,\frac{3}{4},\frac{3}{4}$
\overline{Q}'	10	1	8	(confined)
$\overline{J}_1',\overline{J}_2'$	1	1	8	(confined)

$$W = T_1QL + T_2QM + (J_1J_2)^2 + (J_3J_4)^2 + (J_5J_6)^2 + (LJ_1)(J_1J_3) + W_{exit}$$

 Thankfully, this problem was solved in 2003 by Intriligator and Wecht!

The correct R-symmetry maximizes:

$$a(R_t) = 3\operatorname{Tr}(R_t^3) - \operatorname{Tr}(R_t)$$

over all possible "trial" R-charges:

$$R_t = R_0 + \sum_I s_I F_I$$

- Why is it true?
 - Maximizing a is equivalent to:

(1)
$$\frac{\partial a}{\partial s_I} = 9 \operatorname{Tr}(RRF_I) - \operatorname{Tr}(F_I) = 0$$

(2)
$$\frac{\partial^2 a}{\partial s_I \partial s_J} = 18 \text{Tr}(RF_I F_J)$$
 is negative-definite

- Why is it true?
 - Maximizing a is equivalent to:

(1)
$$\frac{\partial a}{\partial s_I} = 9 \text{Tr}(RRF_I) - \text{Tr}(F_I) = 0$$
 $\langle \partial J_I J_R J_R \rangle \sim \langle \partial J_I T T \rangle$ by SUSY

(2)
$$\frac{\partial^2 a}{\partial s_I \partial s_J} = 18 \text{Tr}(RF_I F_J)$$
 is negative-definite unitarity $\langle \partial J_R J_I J_J \rangle \sim \langle T J_I J_J \rangle \sim \langle J_I J_J \rangle$

$$\left|\langle \partial J_R J_I J_J \rangle \sim \langle T J_I J_J \rangle \sim \langle J_I J_J \rangle \right|$$

- This is extremely easy to implement:
 - Just maximizing polynomials!
- One important caveat, though:
 - Need to know all of the IR flavor symmetries...
 - Accidental symmetries may arise!
 - E.g., gauge invariant operator appears to violate unitarity bound, $R \geq 2/3$

- a-maximization makes nearly all SCFT flavor models 'calculable'
 - Can fill in the ?'s in old models

- a-maximization makes nearly all SCFT flavor models 'calculable'
 - Can fill in the ?'s in old models

What is the *simplest* viable model?

Models

- We will focus on:
 - '10-centric' SU(5) models
 - Vector-like models
 - Greatly simplifies CFT exit!

Models

- We will focus on:
 - '10-centric' SU(5) models
 - Vector-like models
 - Greatly simplifies CFT exit!
- Primary constraints:
 - Proton decay (take $\Lambda_c \sim M_{GUT}$)
 - SU(5) Landau pole should not occur in conformal window!

SU(5) Landau Pole?

• Once we know the correct R-symmetry, can integrate β_{g_5} :

$$\beta_{g_5} = \frac{-3 \operatorname{Tr} \left[U(1)_R \operatorname{SU}(5)_{\text{GUT}}^2 \right]}{16\pi^2 \left(1 - \frac{5g_5^2}{8\pi^2} \right)} g_5^3$$

- We'll (conservatively) assume the matter content of a minimal SU(5) GUT
- Absence of Landau pole in CFT window is a very strong constraint on models

Let's start with a simple toy model:

	$SU(5)_{GUT}$	SU(N)
X + S	10+1	
$\overline{X} + \overline{S}$	$\overline{10}+1$	

$$4 \le N \le 7$$

$$W_{int} = T_1 \overline{X} S$$

Let's start with a simple toy model:

	$SU(5)_{GUT}$	SU(N)
X + S	10+1	
$\overline{X} + \overline{S}$	$\overline{10}+1$	

$$4 \le N \le 7$$

$$W_{int} = T_1 \overline{X} S$$

2 constraints on 5 unknowns:

$$0 = T(G) + \sum_{i} (R_i - 1)T(r_i)$$
$$2 = R_{T_1} + R_{\overline{X}} + R_S$$

All we have to do is maximize

$$a(R_X, R_{\overline{X}}, R_S, R_{\overline{S}}, R_{T_1}) = 2(N^2 - 1) + \sum_{i} \dim(r_i) \left(3(R_i - 1)^3 - (R_i - 1) \right)$$

subject to these 2 constraints.

Easy to do, e.g., with Mathematica

• This gives:

N	R_{T_1}	R_X	$R_{\overline{X}}$	R_S	$R_{\overline{S}}$
4	.686	.632	.637	.677	.632
5	.771	.683	.546	.533	.533
6	.920	.625	.455	.439	.439
7	1.191	.445	.364	.356	.356

- Larger N leads to a more strongly coupled theory, with larger R_{T_1}
 - Requires a smaller conformal window:

$$\epsilon_{T_1} = \left(\frac{\Lambda_c}{\Lambda}\right)^{\frac{3}{2}R_{T_1}-1}$$

$10+\overline{5}+1$ Model

Simple extension to 2nd generation:

	$SU(5)_{GUT}$	SU(N)	
$X + \overline{Q} + S$	$10+\overline{5}+1$		6 < 1
$\overline{X} + Q + \overline{S}$	$\overline{10}+5+1$		

$$W_{int} = T_1 \overline{X}S + T_2 XQ$$

$10+\overline{5}+1$ Model

Simple extension to 2nd generation:

$$W_{int} = T_1 \overline{X}S + T_2 XQ$$

- Note that we simply *define* whatever linear combinations appear above to be T_1 and T_2
- Straightforward to check that these interactions violate B&L, so need $\Lambda_c \sim M_{GUT}$

$10+\overline{5}+1$ Model

• Maximizing a(R) gives:

N	R_{T_1}	R_{T_2}	$\Lambda_{\mathrm{SU}(5)}/\Lambda_c$	Λ/Λ_c
6	.740	.706	$10^{2.48}$	$10^{22.91\pm4.33}$
7	.862	.782	$10^{1.80}$	$10^{8.60\pm1.63}$
8	.992	.885	$10^{1.37}$	$10^{4.96\pm0.77}$
9	1.123	1.021	$10^{1.08}$	$10^{3.26\pm0.27}$
10	1.251	1.196	$10^{0.87}$	$10^{2.35\pm0.01}$

 This has trouble with Landau pole constraints for all N!

Our Quest

- Can any simple models avoid this problem?
- We need a sector that is as efficient as possible!
 - Minimize SU(5) representations while staying strongly coupled
- We find many models with right group theory structure, but very few that can avoid this bound...

$\overline{\mathrm{Sp}(2N)}$ Models

	$SU(5)_{GUT}$	$\operatorname{Sp}(2N)$
$Q + \overline{Q}$	${f 5}+{f \overline{5}}$	
A	1	Н

$$N \ge 4$$

$$W_{int} = T_1 \overline{QQ} + T_2 \overline{Q} A \overline{Q}$$

$\mathrm{Sp}(2N)$ Models

	$SU(5)_{GUT}$	Sp(2N)
$Q + \overline{Q}$	${f 5}+{f \overline 5}$	
$\mid A \mid$	1	

$$W_{int} = T_1 \overline{QQ} + T_2 \overline{Q} A \overline{Q}$$

- Only a single $\overline{\bf 5}$ needed, because both the SU(5) and Sp(2N) contractions are anti-symmetric!
- Again can check that interactions violate B&L, so we need $\Lambda_c \sim M_{GUT}$

Sp(2N) Models

Maximizing a(R) gives:

N	R_{T_1}	R_{T_2}	$\Lambda_{\mathrm{SU}(5)}/\Lambda_c$	Λ/Λ_c
$\overline{4}$	1.045	.778	$10^{7.09}$	<u> </u>
5	1.103	.872	$10^{5.02}$	$10^{3.85\pm0.73}$
6	1.154	.950	$10^{3.83}$	$10^{3.45\pm0.65}$
7	1.197	1.014	$10^{3.07}$	$10^{3.09\pm0.51}$
8	1.234	1.067	$10^{2.54}$	$10^{2.76\pm0.34}$
9	1.263	1.111	$10^{2.16}$	$10^{2.55\pm0.26}$
10	1.288	1.147	$10^{1.88}$	$10^{2.40\pm0.20}$

- Evades bound for N = 5,6,7,8
- Maybe some tension fitting between $M_{
 m GUT}$ and M_{Pl}

Sp(2N) Models

•
$$W = T_1 \overline{QQ} + T_2 \overline{Q} A \overline{Q} + \text{Tr}[A^3]$$

N	R_{T_1}	R_{T_2}	$\Lambda_{\mathrm{SU}(5)}/\Lambda_c$	Λ/Λ_c
$\overline{4}$	1.497	.830	$10^{9.66}$	
5	1.786	1.119	$10^{8.18}$	$10^{1.57\pm0.22}$

•
$$W = T_1 \overline{QQ} + T_2 \overline{Q} A \overline{Q} + \text{Tr}[A^4]$$

N	R_{T_1}	R_{T_2}	$\Lambda_{\mathrm{SU}(5)}/\Lambda_c$	Λ/Λ_c
$\overline{4}$	1.331	.831	$10^{6.92}$	
5	1.531	1.031	$10^{5.88}$	$10^{2.00\pm0.32}$
6	1.787	1.287	$10^{4.72}$	$10^{1.50\pm0.28}$
7	2.000	1.500	$10^{4.64}$	$10^{1.26\pm0.23}$
8	2.200	1.700	$10^{4.24}$	$10^{1.05\pm0.16}$

Sp(2N) Models

- These models are simple and seem to fit nicely between M_{GUT} and M_{Pl}
- CFT exit occurs when the mass terms $\overline{Q}Q$ and $\mathrm{Tr}[A^2]$ become important
- It is also straightforward to introduce suppressions for $\overline{F}_i, \overline{H}$ by adding additional SM singlets
 - Allows going to smaller $\tan \beta$

Outlook

- We still need a complete picture of GUT physics...
 - Doublet-triplet splitting, proton decay, etc...
 - Use flavor sector for GUT breaking?
 - Study other GUT groups
- SUSY breaking
 - Soft parameters also suppressed....
 - Viable gravity mediation! [NS '01; Kobayashi, Terao '01]
 - Need to know about non-chiral operators...
 - Bound their dimensions? [In progress]

Outlook

'Large N' Flavor CFTs have a dual AdS picture

- "Bulk masses" outputs rather than inputs
- However, large N is where Landau Pole constraint is strongest...

Summary

- Flavor hierarchies can be generated dynamically by CFT dynamics
 - SUSY models are all now 'calculable' with a-maximization!
- But most such models run into Landau poles for visible gauge couplings...
 - For vector-like simple group theories, almost uniquely picks out a model!
- Need a more complete picture, but perhaps flavor can guide us